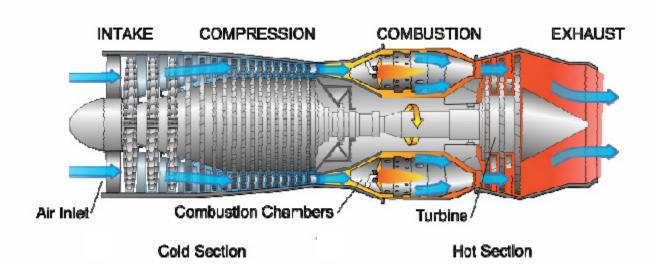


NICKEL BASED SUPERALLOYS IN GAS TURBINE ENGINES

By Lee Sheets MSE 395 – Final Presentation


BACKGROUND

Turbine engines are used in a variety of energy technologies including:

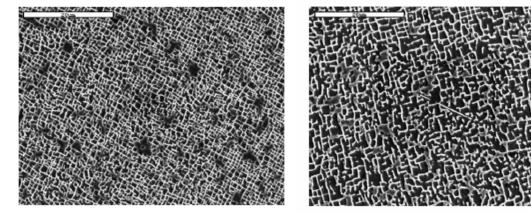
- Nuclear (steam engine)
- Land generators for grid augmentation
- Marine (boat engines)
- Efficiency enhancement
 - Increased operation temperatures
 - Lighter material (aviation applications)

TURBINE ENGINES

- The hot section of the engine is the region where Ni-base superalloys are used
 - High pressure turbine

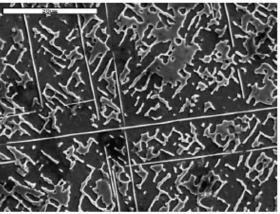
ALLOYING ELEMENTS

- Many elements are used to create desired phases within the material
- Commonly:
 - Precipitation strengthening (Ti, Al)
 - ⊙ Corrosion and Oxidation Resistance (Cr, Al)

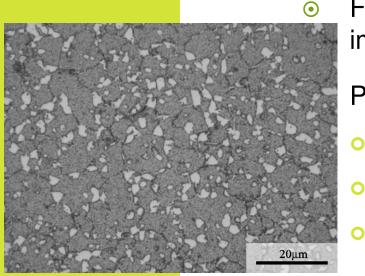


- Grain boundary strengthening (B, carbides)
- Rhenium has become important in turbine blades, but has many issues

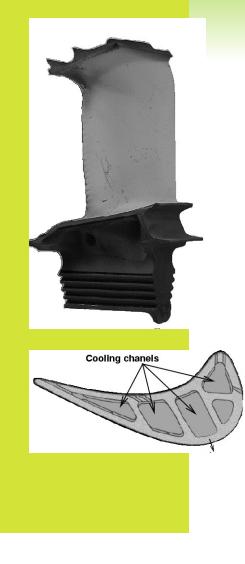
PHASES


Typical Phases

- Gamma Matrix (γ)
 - FCC Ni solid solution
- Gamma Prime (γ')
 - FCC Ni₃(AI,Ti)
 - Coherent particle strengthening
 - Microstructure after initial HT and after simulated aging

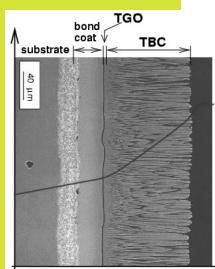

PHASES

- Additional phases
 - \odot Gamma double prime (γ ")
 - Ni₃V or Ni₃Nb
 - Strengthener at low T, issues at high T
 - Sigma (σ)
 - Topologically close packed (TCP) phase
 - Embrittles material
 - Decrease lifetime by 50%



PROCESSING

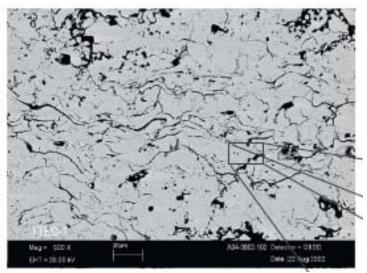
- Polycrystalline Disk Alloy
 - Disks face much lower temperatures than the blades, but face larger stresses depending on region
 - Fatigue resistance is key, creep is also important
 - Powder metallurgy used
 - Expensive
 - Time consuming
 - Energy and cost intensive



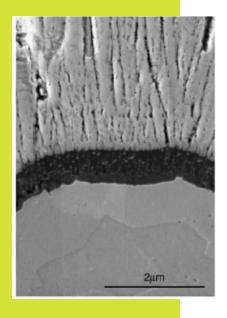
PROCESSING

- Single-Crystal Blade Alloy
 - Blades made in a variety of ways, but this has best balance of properties, creep resistance
 - Longest engine life ~
 - Slow process, creating few blades per heat
 - Cast and columnar blades cannot perform at as high temperatures, are used outside of aviation applications

THERMAL BARRIER COATING


- TBC Ceramic coating deposited onto bond coat
 - Yitria stabalized zirconia used as TBC
 - Bond coats are typically an intermetallic compound, often platinum aluminide
 - Required due to inability of ceramic to bond with metal

- 🜫 Two main processes
 - Air-plasma-sprayed (APS)
 - Electron-beam physical-vapor-deposition (EB-PVD)


THERMAL BARRIER COATING

APS

- Used for land based applications
- Liquid zirconia sputtered onto base layer, forming polycrystalline pancakes.
 - These sinter together during operation temperatures increasing the thermal conductivity

THERMAL BARRIER COATING

EB-PVD

- More reliable technology, aviation applications
- Vacuum chamber, tungsten filament is used to shoot electrons to heat plasma into gas which deposits onto surface of bond coat.
- Columnar ceramic structure created
 - More able to withstand debris impact during operation

CONCLUSIONS

- Ni-base superalloys have many benefits to conventional alloys but still have a long way to go to increase engine efficiency
 - Withstanding higher temperatures for longer periods of time
 - Increased fatigue and creep resistance
 - Thermal barrier coatings need further work in processing and mechanical properties
 - Reduce processing and element energy costs